

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 1 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

CANOPEN INTEGRATION WITH MICROCONTROL

TEMPERATURE ACQUISITION DEVICE

1. Introduction

MicroControl’s μCAN.4.ti-BOX is a compact and rugged I/O module designed for precision temperature sensor
measurement in demanding industrial environments. Capable of acquiring high-resolution temperature data from up
to four thermocouples, the device is ideal for applications in process control, environmental monitoring, and
machinery diagnostics where accurate thermal insight is critical.

By integrating a Senquip telemetry device with the MicroControl module over a CANopen interface, users gain real-
time remote access to temperature data without the need for complex gateways or expensive control systems. This
direct communication enables continuous monitoring of thermal conditions, early fault detection, and the ability to
trend performance over time—all from anywhere with connectivity to the Senquip Portal.

Figure 1 – MicroControl μCAN.4.ti-BOX

This application-note outlines how to interface a Senquip device with the μCAN.4.ti-BOX using CANopen. Specifically,
it covers how to issue a Start Node command and periodically send SYNC messages to trigger Process Data Object
(PDO) transmissions. Once configured, the Senquip device decodes and publishes temperature values to the Portal,
allowing remote visibility of all four thermocouple channels.

If you need more information on CANopen, CSS Electronics provides a comprehensive guide and video introduction.
Further information is also available in the MicroControl manual.

The following sections detail wiring requirements, CAN bus setup, and scripting required to establish a reliable
CANopen link for remote temperature monitoring.

Disclaimer: The information provided in this application note is intended for informational purposes only. Users of
the remote machine control system described herein should exercise caution and adhere to all relevant safety
guidelines and regulations. By utilising the information provided in this application note, users acknowledge their
understanding and acceptance of the associated risks. The authors and contributors disclaim any warranties,
expressed or implied, regarding the accuracy or completeness of the information presented.

https://www.microcontrol.net/en/portfolio/i-o-modules/box/mcan-4-ti-box/
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://youtu.be/DlbkWryzJqg?si=Ke228Z5kcivTF3Tt
https://files.microcontrol.net/manual/hb_mcan4ti_box_v4r00_en.pdf

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 2 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2. Introduction to CANopen

CANopen is a communication protocol built on the Controller Area Network (CAN) physical layer. It is widely used in
industrial automation, mobile machinery, and process control systems due to its reliability, modular structure, and
well-defined message types.

In a CANopen network, each device (or node) is assigned a Node ID from 1 to 127. Communication is structured
around standard message types, which serve distinct roles in synchronising devices, exchanging data, and
configuring behaviour.

Some of the most important message types are:

Process Data Objects (PDOs)

PDOs are used for real-time data exchange. These messages are short (up to 8 bytes) and transmitted without
confirmation. A device might use a Transmit PDO to broadcast sensor readings (like thermocouple temperatures),
while a Receive PDO is used to receive control commands. PDOs are typically linked to a SYNC message to keep data
timing consistent across the network.

Service Data Objects (SDOs)

SDOs provide a way to read and write configuration parameters from a device’s object dictionary. They are used less
frequently and are not real-time—think of them as setup and diagnostics channels. SDO communication is more
complex and often not needed for simple monitoring tasks.

Network Management (NMT)

NMT messages are used to control the state of nodes, such as starting, stopping, or resetting them. These messages
are sent by a CANopen master (in our case, the Senquip device).

SYNC

The SYNC message is a broadcast that tells all listening nodes to send their PDOs. This creates coordinated data
updates across multiple devices.

2.1. CANopen Message Identifiers

The following table lists common CANopen messages and their hex identifiers:

Function Identifier (Hex) Notes

NMT (Network Management) 0x000 Sent by master to control node states

SYNC 0x080 Broadcast to trigger PDO transmission

Time Stamp 0x100 (Optional) Synchronizes time across devices

PDO1 (Transmit) 0x180 + Node ID Device sends data in response to SYNC

PDO1 (Receive) 0x200 + Node ID Device receives data (not used in this example)

SDO (Transmit) 0x580 + Node ID Device sends configuration/status

SDO (Receive) 0x600 + Node ID Device receives configuration

Heartbeat/Node Guard 0x700 + Node ID Used to monitor device availability

For example, if a device has a Node ID of 1:

• It will transmit its first PDO at 0x181

• It will respond to SDO requests at 0x581

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 3 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

For this application, the interface is elegantly simple. The Senquip device only needs to perform three actions:

1 - Issue Start Node Command

We send a Start Node Command (NMT function) to transition the MicroControl module from pre-operational to
operational state.

Start Node Command:

COB ID Data Length Byte 0 Byte 1

0x00 2 0x01 Node

In this case, the Node will be 1, or 0 for all.

2 - Issue Sync Command

In this application-note, we assume that the MicroControl unit has already been configured to transmit PDOs for
four K-type thermocouples upon receipt of a SYNC message. The Senquip device will parse and publish these PDO
values, allowing remote monitoring of temperature in real time.

We issue periodic SYNC messages to prompt the device to transmit its configured Process Data Objects (PDOs),
which contain the thermocouple readings.

SYNC Command:

COB ID Data Length

0x80 0

The sync command has no data bytes.

3 – Parse the PDO response

The MicroControl module will respond to a SYNC Command by sending PDOs.

PDO Response:

COB ID Data Length Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x181 8 Thermocouple 1 Thermocouple 2 Thermocouple 3 Thermocouple 4

 LSB MSB LSB MSB LSB MSB LSB MSB

Since data is sent in little endian format, bytes will need to be flipped when the CAN message is parsed by the
Senquip device.

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 4 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Wiring the Senquip Device to MicroControl Temperature Acquisition Unit

In this application note, we will use the CAN 1 port on a Senquip QUAD, wired to the CAN port of the MicroCOntrol
unit.

Figure 2 shows the top view of the μCAN.4.ti-BOX PCB. Use the figure to identify the terminal blocks, LEDs and DIP
switches.

Figure 2 - uCAN.4.ti-BOX PCB Layout

1. Switch to configure baud rate
2. Switch to configure node ID
3. Terminal block for temperature sensors
4. Terminal block for voltage supply and CAN
5. Switch for CAN bus termination
6. Bi-colour LED for device status
7. Bi-colour LED for network status

 From the MicroControl manual, we find that a Baud DIP switch position of 0110 sets a baud rate of 250kbps. The
Senquip device baud rate will be set to match.

The module id is set to 1 using the Modul ID DIP switch.

The following connections are required:

Connection Senquip QUAD μCAN.4.ti-BOX

CAN L Pin 12, CAN L CAN L

CAN H Pin 11, CAN H CAN H

GND Pin 2, GND V+

Switched PWR Pin 1, PWR + GND

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 5 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

If a screened wire is available, it should be connected to ground on the Senquip device. Connecting the shield to the
Senquip and MicroControl unit can create a ground loop which will be susceptible to magnetic fields.

Is it suggested that the 120ohm CAN termination resistor be turned on using the Term switch, on the MicroControl
unit. If the cable length between the Senquip and the MicroControl device is long, or communications are unstable,
one should be fitted to the Senquip device as well.

Figure 3 - Senquip QUAD to MicroControl uCAN.4.ti-BOX Wiring

4. Senquip Device Configuration

The Senquip device is setup with a base interval of 5 seconds. The CAN port is configured for a bit rate of 250kbps
and is set to scan for incoming messages for the full base interval of 5 seconds. The CAN peripheral will need to be
able to transmit on to the bus to issue START and SYNC commands. No filters are used as very few messages are
expected from the MicroControl device. Raw CAN messages are set to transmit to the Senquip Portal for debug
purposes, this can be turned off later.

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 6 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 4 - Senquip Device CAN Configuration

5. The Device Script

This script enables a Senquip device to communicate with a CANopen thermocouple measurement module, retrieve
four temperature values, and dispatch them for remote monitoring via the Senquip Portal or other endpoints.

Firs, we load the required libraries and create some constants related to:

• NODE_ID: CANopen node address of the MicroControl temperature acquisition device.

• NMT_COB_ID: COB-ID for Network Management (always 0x00).

• SYNC_COB_ID: COB-ID for SYNC messages (always 0x80).

• PDO_COB_ID: Expected COB-ID of the Process Data Object (PDO) from the device. Calculated as 0x180 + NODE_ID.

• NMT_START: Start command for NMT (value 0x01).

We then issue 2 CAN send commands. The first one sends the Start Node command to put the MicroControl device
into operational mode where it can handle PDO-communication. The second is a repeating send that sends the SYNC
command every 2.5 seconds. The MicroControl device should then respond every 2.5 seconds with a PDO message
containing the thermocouple data. Note the use of the SQ.encode function to convert a number into an 8 bit string.

SQ.set_data_handler registers an inline function that will be called after each base interval. This function is passed
all measured data including CAN messages.

load('senquip.js');

load('api_timer.js');

let NODE_ID = 0x01; // MicroControl device address

let NMT_COB_ID = 0x00;

let SYNC_COB_ID = 0x80;

let PDO_COB_ID = 0x180 + NODE_ID;

let NMT_START = 0x01;

CAN.tx(1, NMT_COB_ID, SQ.encode(NMT_START,SQ.U8) + SQ.encode(NODE_ID,SQ.U8), 2, CAN.STD); // Start

CANopen node 1

CAN.tx(1, SYNC_COB_ID, "", 0, CAN.STD + CAN.TX_SLOT(0),2500); // Send the SYNC message every 2.5 sec

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 7 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

In the handler function, if CAN data exists, each message ID is checked to see if it is a PDO message from the
MicroControl device. If it is, the 4 thermocouple values are extracted and are dispatched to the Senquip Portal.

The CAN data arrives as a text string. The SQ.parse function extracts bytes from the string and interprets them as
numbers. For instance, looking at tc1, we start at byte 0 in the string and extract 4 characters (for example “abcd”).
The function interprets the text as a hex number 0xabcd and reverses the order because it is little endian to become
0xcdab and then interprets it as a signed number. Finally, the extracted value is divided by 10 to reveal the
temperature in °C.

Finally, four custom parameters are defined with a descriptive name and unit:

SQ.set_data_handler(function(data) {

 let obj = JSON.parse(data);

 if (typeof obj.can1 !== "undefined") {

 for (let i = 0; i < obj.can1.length; i++) {

 if (obj.can1[i].id === PDO_COB_ID) {

 let tc1 = SQ.parse(obj.can1[i].data, 0, 4, -16, SQ.S16) / 10;

 let tc2 = SQ.parse(obj.can1[i].data, 4, 4, -16, SQ.S16) / 10;

 let tc3 = SQ.parse(obj.can1[i].data, 8, 4, -16, SQ.S16) / 10;

 let tc4 = SQ.parse(obj.can1[i].data, 12, 4, -16, SQ.S16) / 10;

 SQ.dispatch(1, tc1);

 SQ.dispatch(2, tc2);

 SQ.dispatch(3, tc3);

 SQ.dispatch(4, tc4);

 }

 }

 }

}, null);

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 8 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6. Conclusions

This script demonstrates how a Senquip device can be used to interface with a CANopen temperature module,

initiating communication, synchronising data flow, and decoding multiple temperature values in real-time. By

leveraging the built-in Senquip scripting capabilities, users can monitor critical thermal parameters from remote

locations with minimal configuration. The solution is flexible, efficient, and ideal for industrial environments where

reliable temperature data is essential for performance and safety.

 Document Number Revision Prepared By Approved By
 APN0043 1.0 NGB NB

 Title Page
 CANopen Integration with MicroControl Temperature Acquisition Device 9 of 9

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

7. Appendix A – Full Application Script
load('senquip.js');

load('api_timer.js');

let NODE_ID = 0x7F; // MicroControl device address

let NMT_COB_ID = 0x00;

let SYNC_COB_ID = 0x80;

let PDO_COB_ID = 0x180 + NODE_ID;

let NMT_START = 0x01;

CAN.tx(1, NMT_COB_ID, SQ.encode(NMT_START,SQ.U8) + SQ.encode(NODE_ID,SQ.U8), 2, CAN.STD); // Start CANopen

node 1

CAN.tx(1, SYNC_COB_ID, "", 0, CAN.STD + CAN.TX_SLOT(0),2500); // Send the SYNC message every 2.5 sec

SQ.set_data_handler(function(data) {

 let obj = JSON.parse(data);

 if (typeof obj.can1 !== "undefined") {

 for (let i = 0; i < obj.can1.length; i++) {

 if (obj.can1[i].id === PDO_COB_ID) {

 let tc1 = SQ.parse(obj.can1[i].data, 0, 4, -16, SQ.S16) / 10;

 let tc2 = SQ.parse(obj.can1[i].data, 4, 4, -16, SQ.S16) / 10;

 let tc3 = SQ.parse(obj.can1[i].data, 8, 4, -16, SQ.S16) / 10;

 let tc4 = SQ.parse(obj.can1[i].data, 12, 4,-16, SQ.S16) / 10;

 // -437 is a fault

 if (tc1 > -436){SQ.dispatch(1, tc1);} else {SQ.dispatch(1, "fault");

SQ.dispatch_event(1,SQ.WARNING,"check sensor");}

 if (tc2 > -436){SQ.dispatch(2, tc2);} else {SQ.dispatch(2, "fault");

SQ.dispatch_event(2,SQ.WARNING,"check sensor");}

 if (tc3 > -436){SQ.dispatch(3, tc3);} else {SQ.dispatch(3, "fault");

SQ.dispatch_event(3,SQ.WARNING,"check sensor");}

 if (tc4 > -436){SQ.dispatch(4, tc4);} else {SQ.dispatch(4, "fault");

SQ.dispatch_event(4,SQ.WARNING,"check sensor");}

 }

 }

 }

}, null);

