

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 1 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

SENQUIP API DATA ACCESS WITH PYTHON

1. Introduction
The Senquip Cloud API allows you to seamlessly integrate with the Senquip platform, providing real-time access to
asset data and to streamline the management of multiple devices from a central platform. Whether you need to
track performance, manage diagnostics, or leverage advanced analytics, this RESTful API offers a straightforward way
to interact with our cloud services.

Key features include:

• Real-Time Data: Get up-to-date information on asset status and location.

• Device Management: Modify device settings, network configurations, and other parameters directly via the API.

• Provisioning: Add new devices to your account or perform bulk updates.

This application note provides simple Python examples for retrieving device data from the Senquip Cloud API V2.
Two approaches are included:

• JSON output for developers who want to integrate Senquip data directly into their applications, dashboards, or
analytics pipelines.

• CSV output for engineers and analysts who prefer working with data in spreadsheets or other tools.

Both examples demonstrate how to authenticate, query a device, and return measurement data. They are intended
as quick start guides that can be adapted to your own use case, whether for lightweight data collection, integration
into larger systems, or offline analysis.

To access the Senquip API, you must have an account on the Senquip Portal. If you do not have one, create one for
free, at portal.senquip.com.

To interact with devices via the API, the device must either have:

• Trial Access: Available for 90 days from first activation.

• Hosted Plan: Please find plan information on the Senquip Portal.

https://cloud-api-docs.v2.senquip.com/
https://portal.senquip.com/

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 2 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2. Senquip API V2 Basics
For more information on working with the API, see the Senquip API V2 documentation.

2.1. Authorization
All API requests must contain a valid API Key. To generate API credentials, under account settings, navigate to the
API Access tab. Credentials can be generated using the Show API Credentials button.

Copy the API Key value. This is your access token, keep it safe!

Figure 1 - Generating an API Key

2.2. Retrieving Device Data
The Get Device Data endpoint retrieves data for a given device over a specified time.

https://api.senquip.com/cloud-api-v2/device/DEVICEID/data

Parameters

The time range of the data can be customised as required using optional query parameters. If no query parameters

are provided, it returns the latest data point.

• relative: Request data relative to the current time. Examples: 1m = last one minute, 3d = last three days, 5w = last five
weeks, 2M = last two months.

"https://api.senquip.com/cloud-api-v2/device/DEVICEID/data?relative=5m”

• dataPoints: Maximum number of data points to return.

"https://api.senquip.com/cloud-api-v2/device/DEVICEID/data?dataPoints=10"

• fromTime / toTime: Start and end of the time range, specified as Unix timestamps (seconds).

"https://api.senquip.com/cloud-api-v2/device/data/DEVICEID?fromTime=1724901311.8&toTime=1724901551.8"

https://cloud-api-docs.v2.senquip.com/

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 3 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

• pageStartTime: Used for pagination. If the response includes a lastEvaluatedTime, pass this value into pageStartTime
for the next request to continue retrieving data.

• dataKeys: Restrict results to specific measurement fields. Can be repeated for multiple keys.

"https://api.senquip.com/cloud-api-v2/device/DEVICEID/data?relative=10m&dataKeys=vin&dataKeys=ambient"

Response

Requests can take up to 20 seconds when retrieving data over a large time range. Set your request timeout
accordingly!

• data: An array of data points collected from the device.

• lastEvaluatedTime: A timestamp (Unix timestamps in seconds) used for pagination. If present, it should be provided in
the next request to retrieve the next page of results. If null, there is no more data to paginate.

• deviceid: The id of the device the data belongs to.

• dataCount: The number of data points returned.

• message: Informational status message.

There is an internal limit of how much data can be returned per request. If a non-null value for lastEvaluatedTime is
returned, then there is more data available for the given parameters. In the example below, all the requested data
has been returned as the lastEvaluatedTime is showing as null.

The lastEvaluatedTime can be passed into a new query as the pageStartTime to continue the request.

Figure 2 - Example Response

{

 "data": [

 {

 "ts": 1729462721.7,

 "ambient": 24.65,

 "cp3": "MCswKzAuMDAwKzArMCswLjEzKzE3Ny40KzAuMTYrMTkuNisxLjU5KzAuMTMrMC4wMQ0K",

 "ttl": 1792534721,

 "cp9": 0.13,

 "cp8": 0,

 "current4": 0.15,

 "state": 0,

 "wifi_ip": "192.168.1.216",

 "deviceid": "ZSBDH91FF",

 "vreg": 9.06,

 "vsys": 4.16,

 "cycle": 3591,

 "aws_ts": 1729462721,

 "cp13": 1.59,

 "wifi_rssi": -40,

 "light": 1,

 "vin": 12.09,

 "analog4": 5.159

 }

],

 "lastEvaluatedTime": null,

 "deviceid": "ZSBDH91FF",

 "dataCount": 1,

 "message": "OK"

}

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 4 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Example Python Scripts
This application note provides two example Python scripts to demonstrate how to retrieve data from the Senquip
Cloud API V2 and store it locally. They are intended as quick start references and can be adapted to your own
projects.

The example scripts are intentionally lightweight and use only the requests package in addition to standard Python
libraries. This keeps them easy to run without complex setup.

Both scripts handle pagination automatically using lastEvaluatedTime. Large datasets will be split across multiple

requests until all points are retrieved.

Appendix 1 – JSON Output

Saves all retrieved datapoints into a single JSON file (data.json). This format is ideal for developers who plan to feed

the data into applications, dashboards, or analytics pipelines.

Returns all available fields, but the file may be large if the requested time range is long.

Appendix 2 – CSV Output
Saves selected datapoint fields into a CSV file (data.csv). This is convenient for engineers and analysts who want to
review or graph data in Excel, Google Sheets, or other spreadsheet tools.

Limits file size by only writes the keys specified in the csv_keys list.

3.1. How to Run the Scripts
To demonstrate how to access data through the Senquip Cloud API V2, this application note includes two simple
Python scripts. They are lightweight, easy to run, and serve as starting points for your own integrations.

1. Install Python 3 (if not already installed).
2. Install the requests package using pip: >>pip install requests
3. Edit the script:

a. Replace api_key with your own API key generated from the Senquip Portal.
b. Replace deviceid with the identifier of your Senquip device.
c. Adjust start_time and end_time (Unix timestamps in seconds) or use relative parameters as needed.
d. CSV example only - edit the csv_keys list to specify which datapoint fields should be written to the CSV file.

4. Run the script: >>python scriptname.py

The script will make one or more API calls, display progress in the console, and write the data to a file in the same
folder.

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 5 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 3 - Running the Python Script – Multiple Requests were Performed

4. Conclusion
The example scripts in this application note are designed to help you get started quickly with the Senquip Cloud API
V2. Whether exporting data as JSON for use in applications, or as CSV for analysis in spreadsheets, the scripts show
the essentials of authenticating, retrieving, and storing device measurements.

They are intended as a foundation — you can adapt them to build automated data pipelines, monitoring
dashboards, or custom reporting tools tailored to your requirements.

For more advanced usage, including device management and provisioning, refer to the full Senquip API V2
documentation available through the Senquip Portal.

https://cloud-api-docs.v2.senquip.com/
https://cloud-api-docs.v2.senquip.com/

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 6 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Appendix 1: Extracting Data as JSON

===

Example python script to request data from the nominated

deviceid and save it to a file in JSON format

v2.0.0, Copyright Senquip 2025

===

import requests, json

import time

Replace this value with your own credentials:

api_key = "XXXXXXXXX"

Device to request data from

deviceid = 'XXXXXXXX'

start_time = 1756230395

end_time = int(time.time())

====== Function: Request data for a device =========

def getData(deviceid, lastEvaluatedTime = None):

 url = "https://api.senquip.com/cloud-api-v2/device/" + deviceid + "/data"

 headers = {

 "x-api-key": api_key,

 "Content-Type": "application/json",

 "Accept-Encoding": "gzip, deflate"

 }

 params = {

 'fromTime': start_time,

 'toTime': end_time,

 'pageStartTime': lastEvaluatedTime

 }

 response = requests.request("GET", url, headers=headers, data={}, params=params)

 return json.loads(response.text)

Get data for the device

request_count = 0

data_count = 0

lastEvaluatedTime = None

with open('data.json', 'w') as file:

 file.write('[')

 while ((lastEvaluatedTime is not None) or (data_count == 0)):

 response = getData(deviceid, lastEvaluatedTime)

 print("#%d Received %d items"%(request_count, len(response['data'])));

 for i in response['data']:

 if data_count != 0: file.write(",")

 file.write(str(i).replace(" ", "").replace("'", "\""))

 file.flush()

 data_count = data_count + 1;

 if "lastEvaluatedTime" in response:

 lastEvaluatedTime = response['lastEvaluatedTime']

 else:

 lastEvaluatedTime = None

 request_count = request_count + 1

 file.write(']')

print("Made %d API requests"%request_count)

print("Wrote %d datapoints to file"%data_count)

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 7 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Appendix 2: Extracting Data as CSV

===

Example python script to request data from the nominated

deviceid and save it to a file in CSV format

v1.0.0, Copyright Senquip 2025

===

import requests, json, base64

import time

Replace this value with your own credentials:

api_key = "XXXXXXXX"

Device to request data from

deviceid = 'XXXXXXX'

Keys to save as CSV

csv_keys = [

 "ts",

 "ambient",

 "cp1",

 "cp2",

]

start_time = 1756734370

end_time = int(time.time())

====== Function: Request data for a device =========

def getData(deviceid, lastEvaluatedTime = None):

 url = "https://api.senquip.com/cloud-api-v2/device/" + deviceid + "/data"

 headers = {

 "x-api-key": api_key,

 "Content-Type": "application/json",

 "Accept-Encoding": "gzip, deflate"

 }

 params = {

 'fromTime': start_time,

 'toTime': end_time,

 'pageStartTime': lastEvaluatedTime

 }

 response = requests.request("GET", url, headers=headers, data={}, params=params)

 return json.loads(response.text)

Get data for the device

request_count = 0

data_count = 0

lastEvaluatedTime = None

with open('data.csv', 'w') as file:

 # Write CSV header

 file.write(",".join(csv_keys))

 file.write("\n")

 while ((lastEvaluatedTime is not None) or (data_count == 0)):

 response = getData(deviceid, lastEvaluatedTime)

 print("#%d Received %d items"%(request_count, len(response['data'])));

 for i in response['data']:

 if data_count != 0: file.write("\n")

 # Write CSV data, blank if not present, decode base64 strings

 value = []

 for key in csv_keys:

 Document Number Revision Prepared By Approved By
 APN0045 1.0 NGB NB

 Title Page
 Senquip API Data Access with Python 8 of 8

Copyright © 2025 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 v = i.get(key, "")

 # Try to decode base64 if value is a string and looks like base64

 if isinstance(v, str):

 try:

 # Try to decode, if not base64, just use original

 decoded = base64.b64decode(v, validate=True)

 # If decoded is printable, use it as string

 try:

 decoded_str = decoded.decode('utf-8')

 v = decoded_str

 except Exception:

 v = v # keep as original if not utf-8

 print("except: ", v)

 except Exception:

 pass # not base64, keep as is

 value.append(str(v))

 # put quotes around each value

 file.write(",".join(['"%s"' % x.replace('"', '""') for x in value]))

 file.flush()

 data_count = data_count + 1;

 if "lastEvaluatedTime" in response:

 lastEvaluatedTime = response['lastEvaluatedTime']

 else:

 lastEvaluatedTime = None

 request_count = request_count + 1

print("Made %d API requests"%request_count)

print("Wrote %d datapoints to file"%data_count)

